A.Verikas, A.Lipnickas, K.Malmqvist, M.Bacauskiene, A.Gelzinis, Soft combination of neural classifiers: A comparative study, Pattern Recognition Letters, Volume 20, Issue 4, April 1999, pp.: 429-444

This paper presents four schemes for soft fusion of the outputs of multiple classifiers. In the first three approaches, the weights assigned to the classifiers or groups of them are data dependent. The first approach involves the calculation of fuzzy integrals. The second scheme performs weighted averaging with data-dependent weights. The third approach performs linear combination of the outputs of classifiers via the BADD defuzzification strategy. In the last scheme, the outputs of multiple classifiers are combined using Zimmermann's compensatory operator. An empirical evaluation using widely accessible data sets substantiates the validity of the approaches with data-dependent weights, compared to various existing combination schemes of multiple classifiers.

Keywords:Classifcation; Decision fusion; Neural network; Fuzzy integral

Download the article in PDF: .....download pdf ... link to article in the Elsevier database at LIBRIS

Contact the authors by e-mails:

Antanas Verikas mailto://antanas.verikas[eta]ide.hh.se
Arunas Lipnickas mailto://lipnick[eta]soften.ktu.lt
Kerstin Malmqvist mailto://Kerstin.Malmqvist[eta]ide.hh.se
Marija Bacauskiene mailto://mabaca[eta]eaf.ktu.lt
Adas Gelzinis mailto://adgel[eta]eaf.ktu.lt

Department of Applied Electronics,
Kaunas University of Technology,
Studentu 50,
LT-3031 Kaunas,
LITHUANIA